Kubikzahlen

Abstract geometric cubes background. Modern technology
Dr. Michael Glaubitz
Dr. Michael Glaubitz

mathematik-unterrichten.de

n sei irgendeine natürliche Zahl. Beweisen Sie, dass die Zahlen n+2 und n^2+n+1 nicht beide zugleich Kubikzahlen sein können.

Sind Sie an meiner Lösung interessiert?
Dann spendieren Sie mir doch einen Kaffee und laden Sie sie mit einem Klick herunter:

Teilen

Wenn Ihnen diese Seite gefällt und Sie meinen, dass sie auch für andere interessant sein könnte, dann klicken Sie doch einen der folgenden Buttons, um sie zu teilen:

Weitere Leckerbissen

Defocused scary ghost hands behind a white glass background
Die Phantom-Parabel

Mit diesem kleinen Gespenst können Sie die Nullstellen einer Parabelfunktion visualisieren, selbst wenn diese komplex sind.

big bang, black hole, supermassive star, galaxy, cosmos, physical, science fiction wallpaper.
Eine Milliarde

Können Sie die Zahl eine Milliarde so als Produkt zweier ganzer Zahlen m und n darstellen, dass weder m noch n auf die Ziffer 0 enden?

13 Zahlen im Stern

Setzen Sie die Zahlen 1 bis 13 in die folgenden Felder so ein, dass die Summe der Zahlen auf jeder Geraden gleich ist.

Paper squares
Quadratzahl oder nicht?

Können Sie ohne Taschenrechner, Smartphone oder Computer feststellen, ob die Zahl 3.141.592.653.589.793 eine Quadratzahl ist?

Minimalist chain links
Verkettete Zahlen

Können Sie sämtliche Zahlen von 1 bis 17 so anordnen, dass die Summe benachbarter Zahlen immer eine Quadratzahl ergibt?